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Abstract

We give a generalisation of the multivariate beta integral. This is used to show that the
(multivariate) Bernstein—-Durrmeyer operator for a Jacobi weight has a limit as the weight
becomes singular. The limit is an operator previously studied by Goodman and Sharma. From
the elementary proof given, it follows that this operator inherits many properties of the
Bernstein—-Durrmeyer operator in a natural way. In particular, we determine its eigenstructure
and give a differentiation formula for it which is new.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The Bernstein operator B, : C[0, 1] »II,, which is defined by

Bf(x) =" (,’Z)xk(l x)""f(’;), (1.1)
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can be modified to obtain MY the Bernstein-Durrmeyer operator for a Jacobi weight

M) =Y (,’:)x"a — "),

k=0

where

Jo X1 = x)"Hf (x) dx
fol Xk (1 — x)"Re dx

The multivariate version of this operator, where the interval [0,1] is replaced
by a simplex 7 in R’, is defined below. By using a generalisation of the multivariate
beta integral

1—x I—xp— =X
/ / / X1 = xy = = xR d L di dixy

(o)l ) I'(By)

([)’o+31 rpy Polvo B0 12
we show ¢} (f) and its multivariate analogue have a limit as some or all y;—> — 17.
Thus, M!f converges as p— — 1*, with the limit operator inheriting many
properties in a natural way. It turns out that this limit operator is the one previously
studied by Chen in the univariate case, and Goodman—Sharma in the multivariate
case. Hence, we provide a simple explanation as to why this operator has properties
which are so close to those of the Bernstein—-Durrmeyer operator, and a simple proof
of these properties. In particular, we determine its eigenstructure and give a
differentiation formula for it which is new.

. (f) =

co= (), > — 1

1.2. Definitions

Let 1 be the set of s 4 1 vertices of an s-simplex 7" in R’, and & = (&), be the
corresponding barycentric coordinates. We will use standard multi-index notation
with indices from ZK and 7%, so, for example,

=1 & «ezy, Br=p'B!B), BeZ’.
velV
The value of o at v is denoted by «, or «(v), depending on which is most
aesthetic.
The Bernstein operator of degree n for the simplex 7" with vertices V is defined by

Byyf =) ( )éfvx vfeC(T), (1.3)

|ot|]=n
anV
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To describe Durrmeyer’s modification of this operator, we define the linear
functional

1
S /[(90....,9k]f - m/sfoA’ (1.4)

where S is any k-simplex in R? with (k-dimensional) volume vol,(S), and 4 : R? - R*
is any affine map taking the k + 1 vertices of .S onto the points 0y, ..., 0 in R® (this is
independent of the choice of S and A). For the points V, taking S = T and 4 as the
identity gives

|/ =i L (1)

For p,> — 1, Yve V, the weight &" =[], & is integrable on T. We denote the
corresponding weighted inner product space by L,(T, "), and use the inner product

o= [ o2 = oo [ rgelaT.e),

The Bernstein—Durrmeyer operator of degree n for a Jacobi weight £* on T can now
be defined by

S (= ey »

This self-adjoint operator on L(T,&") was first defined on L,[0, 1] by Durrmeyer
[Du67] (see also [D81]), then for Jacobi weights by Paltanea [P83] (see also [BX91]),
and the multivariate analogues in Derriennic [D85] (see also [Di95]).

2. A generalised multivariate beta integral

The multivariate gamma and beta functions of ﬁeZK are defined by

“TIre), B =+EL g0

e r(|pl)
The beta integral (1.2) can be written as
p-1 _ _ I 0 21
J,# = =y >0 >

If 0o, ...,0; of (1.4) are the points V = {vy, ...,v,} taken with multiplicities
o(v;) =0, 20, then a change of variables shows that

/ f= F;/ ff‘oq—l’ f\ = (iv)vesupp(og)a (2.2)
[00, +vvy D0, Dss +rr s Us] () Jsupp(a) o = "
—— —

b « | supp(
a(vg) (vs)

where supp(a) = V denotes the support of a.
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Proposition 2.1 (Generalised beta integral). Let anK, keRY. For k> —o, a>1
/ﬁ gszw+K): It (2.3)

[0, «.vs V0, Usy «vny Us] I'(a) I(Joe+ x|)I ()

—_——  —

Proof. Take / = & in (2.2) and use the beta integral (2.1), to obtain

J ¢ = [ 22D g
[U0y ey V0, ,Usy weny Us] (o) Jy (o)
e ——

a(vp) (zs)

For « =1 and x =p —1, the integral (2.3) reduces to the classical beta
integral (2.1).

3. The limit of the Bernstein—-Durrmeyer operator

The inner product <1,¢*)>,, u> —1 in (1.6) becomes unbounded as any
component of u approaches —1, and so a limiting form of MYf as u— —17F
(u,— — 17, Yve V) cannot be defined by substituting u = —1 into (1.6). However,
for fe C(T), we show that

. LD
| — " = (n—1)! ,
im (n )/[UO’ f

(vp) a(vs)

and so a limiting form can be defined in a natural way.
The multivariate shifted factorial (Pochhammer symbol) is defined by

(:u)a = H(Hu)uu O(EZK, (.uv)ggl., = :uv(:uv + 1) (:uv + oy — 1)7
velV

and satisfies
I'(p+ o)
I'(p)

We extend |u| to vectors pueR” (which may have negative entries) via
|Au| = ZUGV M-

= (W, #>0. (3-1)

Lemma 3.1. Let keR", with k> — 1, and define [ — k| eZ by

r—xuw:{h v

0, x,>—1.
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Then, for fe C(T) and aeZ”, |u| = n>1, we have

L8 1 -
lim 2> 7K cK(f) — 7/ féKJr[ K—|7 (32)
#":Kl {1, é ># * Coc.,lc [ Vo, ety Vg yoeny Ugy oeny Ug ]
——
a(vg)+1-[ =x1(vg) o(vs)+1-—x](vs)
where
CM:/ gl = [atrt]) .
' [ 00, eees VO sores Usy oeny Us | Ll + |l +s+ D+ 1= —x])
a(vg)H1-[ = T(rg)  alvs)+1= =« (vs)
In particular,
lim <, €a>“ (n— 1)!/ f. (3.3)
u——1+ 1,& >u 00, «euy U0y ,Usy onny Usl
) (@)
o

Proof. The integrals defining ¢&(f) in (3.2) are finite since k + [ —x|> —1. It

suffices to prove (3.2) for the polynomials f = b, p eZK, since their span is dense in
C(T) and

o
el SN e
For the left-hand side, use the beta integral (2.1) and (3.1), to obtain
Bz
e <<£1 ,éz >>: = lim, (|o (j ;lﬂjsﬁﬁl)ﬁl ~ (e (j |erc|K++s142ﬂ1)/f' (3.4)
p>—1 p>—1
Note, for each ve V, we have
(a+1-]-x1]),=0 < 0,=0, kK, =—1 < (x+x+1),=0, (3.5)
giving
W =supp(a+1—[ —x]) =supp(ox+x+1), (3.6)
and
(k4 [ = Dlpw =0, (3-7)
(e +x+1)| )y =0. (3.8)

Case 1: W = V. Then (3.6) implies
o+1—[ —x|=1l, a+x+1>0
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and so the generalised beta integral (2.3) gives

/ éﬁélﬂ-[—h‘]
[ Ugy eevs VO 4oory Ugy oeny Ug |

a(vg)+1-[ =K1 (vg) o(vs)+1-[ —x](vs)
T+ 1-] —x]+p+x+[ —x])
T(laf + Bl + x| +s+ Dl (ae+1—[ —k])
From this we calculate
oy Fotbretl) Mot tst) _  (xtx+l)y
* Fla+wx+1) I(la|+ 1B+ k[ +s+1) (| + k[ +5+ 1)

Case 2: W#V. Let &}, = (fu)ZL”U =[l,cv & for Uc V. By (2.2) and (3.7), we

have
/ éﬂéwf*ﬂ
[ Doy ---5 0 Usy oevy U ]

.....

a(v)+1=[=xT(vg)  a(vg)+1-[—x](vs)

— 1 B[ —x] go—[ -]
@ T-T —«Tly) /Wé “w

_ 1 B ot
r<<a+1—r—x1>w>/wéw e

Suppose f,>0 for some ve V\W. Then f'?,\W has ¢, as a factor, and hence is zero
over the region of integration (the convex hull of W), giving

(¢ +x+ 1)
K :0: ,
== L s+ 0,

with the last equality following since (o + x + 1), = 0 by (3.8).
Suppose f, = 0 for all ve V\W, i.e., supp(f) = W and | | = |B|. Then 5/5/\W =1,
and we use the beta integral (2.1) to calculate

ettt Dt pte+1) ) T(l(e+r+1) 1)

— w

et F((e+r+1) ) I(l+p+r+1)

(/) :
‘ )
The first factor in the above product is (o + x + 1)/f since supp(f) = W. From (3.8), it

follows that |(« +x + 1), | =0,andso, since | | =[], the second factor becomes

F(latr+ 1) [+lete+D D rla] 4 k| +s+1)
F([@+rx+1) [+18, 1+ (a+rx+1)

‘W

) T(lof + |8l + |x| + s+ 1)
1
(o] + [x] +5+ 1) 5]

%

as required.
Finally, the particular case (3.3) is obtained by taking k = —1in (3.2). O
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By (2.2), we have

k> —1

(1,85 ’

so that {keR": k> — 1} >R : k> c%(f) is continuous, and we have the following
extension of M¥ to ‘singular weights’ £, x> — 1.

(3.9)

Theorem 3.2 (Limit operator). For fe C(T) and kx> — 1, we have

lim Myf = Mf =3 ( >é S0, (3.10)
u>-—1 |o=n

where cs(f) is given by (3.3), and
My = M| ey, k> — 1. (3.11)

In particular,

lim MY =Uf =n-1)Y (" 5“/ fo (3.12)
p— =1t o (00, «.ny V0,..,Usy +-vy Us]

Proof. For u> — 1, Lemma 3.1 gives

IMAf = M1l 7<) <a>lli o7

|e|=n

Sl
<1 éot># (f)

and (3.9) gives (3.11). Take kx = —1 in (3.10) to get (3.12). O

The operator U, : C(T)— 11, defined by (3.12) is due to Goodman and Sharma
[GS91] (for the univariate case see [GS87]). It was also considered by Sauer [S94]
who remarks the univariate version was known to W.Z. Chen in 1987. Since U, is the
limit of Durrmeyer operators MK, u> — 1, many properties of the Durrmeyer
operators are inherited, and these can be proved (simply) by taking the limit as
u— —1% eg.,

(i) The M} are positive linear operators on C(T') with [|MLf ||, 7 <I|f|l.. 7-
(ii) They are degree reducing, i.e., M*(Il) Iy, Vn, k.

(iii) They commute, i.e., MFM; = M“M/j, v, k.

hold with U, (or M;, k> — 1) replacing M}#. We illustrate this method in the
next two sections by determining the eigenstructure of U, and a differentiation
formula for it.

Recently, Theorem 3.2 was obtained independently in the univariate case s = 1

(u = (a,a) > — 17) by Paltanea [PO1], where the limit operator U, was attributed to

yet another: Gavrea [G96]. There it was shown that M* does not converge to ]\;I’,j in
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the operator norm. The example used can be modified to show that the multivariate
M does not converge to M¥ in the operator norm as soon as some k, = —1.

4. The eigenstructure of U,

We now describe the eigenvalues and eigenspaces of U, by taking the limit of those
for M¥. The eigenvalues of M}, u> —1 are

n! I(n+|p|+s+1)

Ae(M*) =
«(My) (n—k)\T(n+k+u+s+1)

k=0,1,...,n,
and the corresponding eigenfunctions are the Jacobi polynomials of degree k
for &, i.e.,
Pi={fellx: {f,p>,=0, Vpellj_i}.
As expected, the eigenvalues of U, are

o (n=1¢ , u _
)Lk(Un) = (n—k)! (n+k— 1)! —‘ul}l‘_nl+ /Lk(Mn), k= 07 17 (B

This is easily seen for k>2 since here P}, converges (in the gap metric) to some P}
(see [WOI1]). Recall the gap between (finite-dimensional) subspaces P and Q of C(T)
is given by

gap(P, Q) = max{dist(Pn B, Q),dist(Qn B, P)},

dist(F, G) = sup inf |[|f, g, r,
feF 9€0 "

where B is the unit ball in C(7'). Thus, for each u> — 1 we can choose a basis {p!'}

of P} with p{—p: where {p;} is a basis for P, and so

M} p = (M) pf = U, p; = 2(Uy) p;,

which implies P} is the A, (U,)-eigenspace (a dimension count shows it is all of it).
For k=0,1 the limit eigenvalues are 1 (the rest are distinct). Here P| does not
converge as u— — 17, though Pjj does and P + P| =II;, which is easily seen by
considering the functions

Hy+ 1 n

—— P}, vel.
| +s+1

So

However, a simple calculation shows that IT; are the eigenfunctions of U, for 4 =1,
and so U, is diagonalisable. The fact that linear polynomials are reproduced by U,
(as with B,), was seen as desirable in [S94].
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5. A differentiation formula for M# and U,

149

In this final section, we give a formula for the derivative of M%f and U,f in terms
of some M}jfl applied to the derivative of f. Previously, see, e.g., [S94, Lemma 4.4]
and [Di95, Property F], formulae for the derivative of M!f in terms of some
operator applied to the derivative of f were given, but the operator was not

identified.
The derivative of f in the direction ye R’ is given by
. —f+t
Dyf = hn% f#'
11—

Theorem 5.1 (Differentiation formula). For u= — 1 and v,weV, we have

- n -
Dy (M'f)=—— MOt (D, Ve C\(T).
( nf) n+‘m+s+1 n—1 (vvf)a fG ()

In particular,

Do (Unf) = M (Dyof),  Yf eCH(T).

Proof. In view of Theorem 3.2, it suffices to prove (5.2) for u> — 1. Since
DU_W(é“) = O!vgaigv - Ofwé“iewa

we have
Do (M) = ‘;1 (Z ){ocviaev — 0, &) %
:\mgnzl (ﬁzeb)(ﬁ )éﬁ%

= 2. (n1>{n<f’£ﬂm>ﬂ_"<f,5ﬂ+ew>#}.
poa \ B )Ly, udte,
By the beta integral (2.1),

n o n Bw—i_:uw—i_l
ey, ntlul+ s+ 1Ly L,

and so we obtain

L n n_l C(f7#7ﬁ7v711})
Dy (M}f) = A a4+l Z N
K |Bl=n—1 ﬁ < 7é >,u+ep+ew

(5.3)
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c(fymBio,w) = By + my + DECS = (B, + py + DETS

= [P D (Bt D,
V

Using (5.3) and the integration by parts formula, we then have

o(f s 11, Bov,w) = / Dy (EPHHrerteny
vV

= [ Doy (D B,
Vv

as required. [

In the univariate case s = 1, D,_,, = (v — w)D, with D the univariate derivative,
and p+e,+e,=p+1 (in case v#w), so the formula for kth derivatives, k =
1, ...,n, takes the simple form

DN(Uf) = Mi-L(DYf), vfeCHT).
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